UNIVERSITE ABOUBEKR BELKAID

FACULTE DES SCIENCES DE L'INGENIEUR

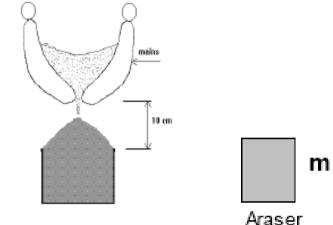
DEPARTEMENT DE GENIE CIVIL

SCIENCE DES MATERIAUX DE CONSTRUCTION Travaux pratiques

Présenté Par: M. GHOMARI F. & Mme BENDI-OUIS A.

ANNEE UNIVERSITAIRE 2007 - 2008

MASSES VOLUMIQUES DES GRANULATS


PARTIE 1 MASSES VOLUMIQUES APPARENTES

DÉFINITION:

- La masse volumique apparente d'un matériau est la masse volumique d'un mètre cube du matériau pris en tas, comprenant à la fois des vides perméables et imperméables de la particule ainsi que les vides entre particules.
- La masse volumique apparente d'un matériau pourra avoir une valeur différente suivant qu'elle sera déterminée à partir d'un matériau compacté ou non compacté.

ESSAI:

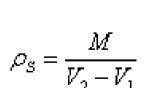
V

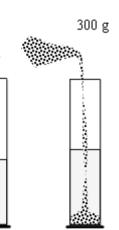
• La masse volumique apparente est donnée par:

- $\rho_{app} = \frac{m}{V}$
- L'essai est répété 5 fois pour un volume de 1 litre et la moyenne de ces essais donne la valeur de la masse volumique apparente.

PARTIE 2 MASSES VOLUMIQUES ABSOLUES

Masses Volumiques absolues

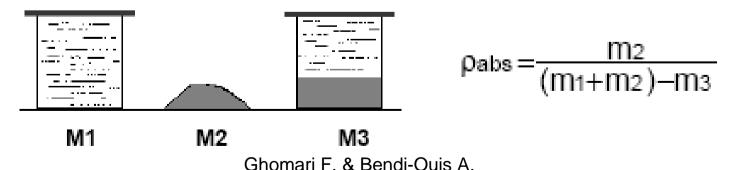

DÉFINITION:


 La masse volumique absolue ps est la masse par unité de volume de la matière qui constitue le granulat, sans tenir compte des vides pouvant exister dans ou entre des grains.

1. Méthode de l'éprouvette graduée

Cette méthode est très simple et très rapide. Toutefois sa <u>précision</u> est faible.

- 1. Remplir une éprouvette gradué avec un volume V1 d'eau.
- 2. Peser un échantillon sec M de granulats (300 g) et l'introduire dans l'éprouvette en prenant soin d'éliminer toutes les bulles d'air.
- 3. Lire le nouveau volume V2.
- La masse volumique absolue est



 V_2

2. Méthode du ballon

 Cette méthode de détermination des masses volumiques est plus précise à condition de prendre un certain nombre de précautions.

- •Déterminer avec précision la masse **m1** du ballon rempli d'eau.
- •Déterminer avec précision la masse **m2** d'un échantillon de matériau sec .
- •Introduire la totalité du matériau dans le ballon, remplir d'eau. Vérifier qu'il n'y a aucune bulle d'air. Peser alors avec précision le ballon, soit **m3**. La masse volumique absolue est alors :

10