UNIVERSITE ABOUBEKR BELKAID

FACULTE DES SCIENCES DE L'INGENIEUR

DEPARTEMENT DE GENIE CIVIL

SCIENCE DES MATERIAUX DE CONSTRUCTION Travaux pratiques

Présenté Par: M. GHOMARI F. & Mme BENDI-OUIS A.

ANNEE UNIVERSITAIRE 2007 - 2008

FORMES DES GRANULATS

PARTIE 1 COEFFICIENT VOLUMETRIQUE

DEFINITION:

- Le coefficient volumétrique est une grandeur numérique, qui permet de caractériser un granulat.
- Le C_V d'un grain est le rapport du volume V du grain au plus petit volume de la sphère circonscrite au grain de diamètre d.

PROCESSUS:

- Prendre 250 g d'un échantillon dont les diamètre sont supérieure à 5 mm.
- Présenter chaque grain dans les encoches du calibre et noter les volumes des sphères trouvées.
- Placer les grains dans l'éprouvette contenant de l'eau et à la fin on notera le volume V₂.
- Établir les calculs sur la feuille d'essai.

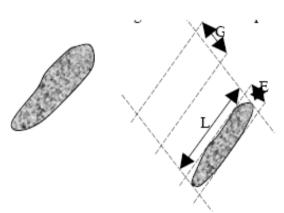
PARTIE 2 COEFFICIENT D'APLATISSEMENT

OBJECTIF:

- L'élaboration des bétons de ciment, ainsi que la réalisation des corps de chaussées, nécessitent de n'utiliser que des granulats ayant une forme assez ramassée, à l'exclusion des granulats plats.
- En effet, ceux-ci ne permettent pas de réaliser un béton très compact, et, par ailleurs, en technique routière, ils ne peuvent être utilisés car ils conduisent à des couches de roulement trop glissantes.
- La détermination du cœfficient d'aplatissement est l'un des tests permettant de caractériser la forme plus ou moins massive des granulats.

DEFINITION:

La forme d'un granulat est définie par trois grandeurs géométriques :


La longueur L,

L'épaisseur E,

La grosseur G, dimension de la maille carrée minimale du tamis qui laisse passer le granulat.

Le cœfficient d'aplatissement A d'un ensemble de granulats est le pourcentage pondéral des éléments qui vérifient la relation: G

- - 1, .

PROCEDURE

Le C_A s'obtient en faisant une double analyse granulométrique, en utilisant successivement, et pour le même échantillon de granulats :

- une série de tamis normalisés à mailles carrées,
- une série de tamis à fentes de largeurs normalisées :

Classe granulaires d/D (mm)	31,5/40	25/31,5	20/25	16/20	12,5/16	10/12	8/10	6,3/8	5/6,3	4/5
Ecartement E des grilles à fentes (mm)	20	16	12,5	10	8	6,3	5	4	3,15	2,5

Correspondance entre classes granulaires d/D et largeur E des grilles à fentes

- Tamiser l'échantillon sur les tamis,
- Peser et éliminer tous les grains passant au tamis de 4 mm et retenus sur celui de 80 mm,
- Peser et retenir séparément tous les grains de fraction d_i/D_i comprise entre 4 mm et 80 mm est pesé,
- Puis le refus de chaque classe granulaire est tamisé sur le tamis à fente d'écartement E correspondant. Le passant à travers chaque grille est pesé.

EXPRESSION DE C_A:

• Pour un classe granulaire d_i/D_i donnée, on peut définir un coefficient d'aplatissement partiel :

$$A_i = \frac{m_i}{R_i} \times 100$$

- avec R_i = masse de chaque classe granulaire d_i/D_i,
- m_i = masse passant à travers le tamis à fente d'écartement E,
- Le coefficient d'aplatissement global A s'exprime en intégrant les valeurs partielles déterminées sur chaque classe granulaire : $A = \frac{M_2}{M_1} \times 100$